Kernel
Locking Engineering

Daniel Vetter, Intel SATG
ELCE 2023, Prague



Why?

* 10+ years of kernel maintainering in graphics
* lots of drivers, lots of locking rearchitecting
* unfortunately lots of bad examples



Also as Articles ...

_ocking Engineering Principles:
nttps://blog.ffwll.ch/2022/07/locking-engineering.html

_ocking Engineering Hierachy:
nttps://blog.ffwll.ch/2022/08/locking-hierarchy.htmi



https://blog.ffwll.ch/2022/07/locking-engineering.html
https://blog.ffwll.ch/2022/08/locking-hierarchy.html

Priorities in Locking Engineering

1.Make it Simple
2.Make 1t Correct
3.Make It Fast



Make it Correct

design for lockdep, never against it
avoid fancy lockdep annotations, simplify instead

prime locking order when CONFIG_LOCKDEP

might lock (), might sleep(),
might alloc(), lockdep assert held()



Use Correct Code

* don't invent locking/concurrency primitives
* pick the simplest possible locking design

* pick the most powerful primitive, e.g. £lush work ()
over completions/waitqueues



Make It Fast

* do you really need faster?
* real workloads, not microbenchmarks

* better architecture is better: Vulkan gpu model,
l0_uring, ...



Pinciple: Protect Data, not Code

scales much better in review and testing

no (subsystem) BKL!

lockdep encourages protecting code

beware antipatterns like kref put mutex ()



Locking Engineering Hierarchy

_evel 0: No Locking
_evel 1: Big Dumb Lock
_evel 2: Fine-grained Locking

| evel 2.5: ... because Performance



Level O0: No Locking

Pattern: Immutable State: 1. construct 2. publish
Pattern: Single Owner: queue work () , completion

Pattern: Reference Counting: struct kref

Rust excels at ownership



Level 1. Big Dumb Lock

* too small risks more deadlocks
* too big protects code, not data anymore
* right sizing often needs hindsight



Level 2: Fine-grained Locking

Pattern: Object tracking lists
Pattern: Interrupt Handler
Pattern: Async processing

Pattern: Weak references
... becaus of performance reasons



Locking Antipattern;
Object Lifetime vs Data Consistency

... holding a lock to keep an object alive

kref put mutex() instead of
kref get unless zero()

flush work () while holding locks

lockdep does not understand cross-release!
therefore use most specific existing primitive



Antipattern: RCU
Antipattern: Atomics
beware LKMM vs C++ and atomics without atomic

Antipattern: preempt/local irqg/bh disable()
local lock as good replacement

Pattern: Make -rt happy, e.g. also seqlock changes
Antipattern: Memory Barriers



Case Study: Atomic Modeset

atomic transactions w/ check/commit split

check phase: per object locks

composability through w/w mutex graph locking
commit phase: ownership using completions

all locking/ownership implemented fully in framework
no visible locking in drivers, dumb code is also correct



Summary/Questions

Principles:

* 1. Dumb 2. Correct 3. Fast
* Protect Data, not Code
Hierarchy

1.No locking

2.Big Dumb Lock

3. Fine-grained Locking
4.Lockless Tricks



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

