

Kernel
Locking Engineering

Daniel Vetter, Intel SATG
ELCE 2023, Prague

Why?

● 10+ years of kernel maintainering in graphics
● lots of drivers, lots of locking rearchitecting
● unfortunately lots of bad examples

Also as Articles ...

● Locking Engineering Principles:
https://blog.ffwll.ch/2022/07/locking-engineering.html

● Locking Engineering Hierachy:
https://blog.ffwll.ch/2022/08/locking-hierarchy.html

https://blog.ffwll.ch/2022/07/locking-engineering.html
https://blog.ffwll.ch/2022/08/locking-hierarchy.html

Priorities in Locking Engineering

1.Make it Simple
2.Make it Correct
3.Make it Fast

Make it Correct

● design for lockdep, never against it
● avoid fancy lockdep annotations, simplify instead
● prime locking order when CONFIG_LOCKDEP
● might_lock(), might_sleep(),
might_alloc(), lockdep_assert_held()

Use Correct Code

● don't invent locking/concurrency primitives
● pick the simplest possible locking design
● pick the most powerful primitive, e.g. flush_work()

over completions/waitqueues

Make it Fast

● do you really need faster?
● real workloads, not microbenchmarks
● better architecture is better: Vulkan gpu model,

io_uring, ...

Pinciple: Protect Data, not Code

● scales much better in review and testing
● no (subsystem) BKL!
● lockdep encourages protecting code
● beware antipatterns like kref_put_mutex()

Locking Engineering Hierarchy

Level 0: No Locking

Level 1: Big Dumb Lock

Level 2: Fine-grained Locking

Level 2.5: … because Performance

Level 3: Lockless Tricks

Level 0: No Locking

● Pattern: Immutable State: 1. construct 2. publish
● Pattern: Single Owner: queue_work(), completion

● Pattern: Reference Counting: struct kref
● Rust excels at ownership

Level 1: Big Dumb Lock

● too small risks more deadlocks
● too big protects code, not data anymore
● right sizing often needs hindsight

Level 2: Fine-grained Locking

● Pattern: Object tracking lists
● Pattern: Interrupt Handler
● Pattern: Async processing
● Pattern: Weak references
● … becaus of performance reasons

Locking Antipattern:
Object Lifetime vs Data Consistency

● … holding a lock to keep an object alive
● kref_put_mutex() instead of
kref_get_unless_zero()

● flush_work() while holding locks

● lockdep does not understand cross-release!
● therefore use most specific existing primitive

Level 3: Lockless Tricks

● Antipattern: RCU
● Antipattern: Atomics
● beware LKMM vs C++ and atomics without atomic_

● Antipattern: preempt/local_irq/bh_disable()

● local_lock as good replacement

● Pattern: Make -rt happy, e.g. also seqlock changes

● Antipattern: Memory Barriers

Case Study: Atomic Modeset

● atomic transactions w/ check/commit split
● check phase: per object locks
● composability through w/w mutex graph locking
● commit phase: ownership using completions
● all locking/ownership implemented fully in framework
● no visible locking in drivers, dumb code is also correct

Summary/Questions
Principles:
● 1. Dumb 2. Correct 3. Fast
● Protect Data, not Code

Hierarchy

1.No locking

2.Big Dumb Lock

3.Fine-grained Locking

4.Lockless Tricks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

